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1. INTRODUCTION 

The problem of themral convection in thin porous horizontal 
layers, either uniformly heated from below (the Benard prob- 
lem) or differentially heated at the side walls (Hadley cir- 
culation), are now well understood. In physical situations, 
strict uniform heating either only in the vertical or only in 
the horizontal direction rarely occurs. Generally, both the 
horizontal and vertical temperature gradients are present 
simultaneously. Weber [l] was the first author to consider 
general linear instability of a convection problem in a porous 
medium, induced by an inclined temperature gradient by 
means of a perturbation method. Nield [2] removed the 
restriction in [l], and used a low-order Galerkin approxi- 
mation to solve the associated eigenvalue problem. Later 
on Nield [3] noted that his earlier treatment [2] was not 
satisfactory, and employed a higher-order Galerkin approxi- 
mation and found considerably improved results. Kaloni and 
Qiao [4] have discmsed the non-linear stability of the title 
problem in the absence of vertical throughflow via the energy 
method. These authors have used the compound matrix 
method to solve the associated eigenvalue problem and the 
golden-section search method to carry out the maximum and 
minimum routines. The authors have also carried out the 
linear stability calculations and their findings compare 
reasonably well with Nield’s [3] result. For the non-linear 
problem, the results of Kaloni and Qiao [4], predicted the 
possibility of subcritical instability. 

The vertical temperature difference across the boundaries is 
AT. We assume that the flow in the porous medium is gov- 
erned by Darcy’s law. For the density variation, the Bous- 
sinesq approximation is assumed to be valid. Accordingly, 
following the non-dimensionalization scheme of Nield [3], 
the governing equations then take the form. 

v.v=o 

v+VP = Tk 

(1) 

(2) 

where v, P, and T are the non-dimensionalized seepage 
velocity, pressure and temperature, respectively, and k is the 
unit vector in the z-direction. We assume there is a through- 
flow of velocity w, in the vertical direction. The non- 
dimensional boundary conditions thus take the form 

w = Q”. T= -(+R,/2)-R,x atz= *l/2 (4) 

where Q” = w,H/cc, is the P&let number, Rv and R, are 
vertical and horizontal Rayleigh numbers, respectively, and 
are defined as 

Our purpose here ‘:o extend the results of Kaloni and Qiao 
[4] when vertical throughflow is present. Apart from being a 
new scientific investi,gation this problem has relevance to the 
performance of packed bed reactors. We again employ the 
energy method for a non-linear stability analysis and carry 
out both linear and non-linear stability calculations. For 
linear instability, we find that our results are in good agree- 
ment with those of Nield’s [5] for low values of the horizontal 
Rayleigh numbers. We, however, give complete results for 
higher values of horizontal Rayleigh number. In addition, 
we also provide new non-linear stability results and these 
predict the possibility of subcritical instabilities. 

Here p0 is the density at the reference temperature, g is 
the gravitational acceleration, yr is the thermal expansion 
coefficient, K is the permeability of the medium, n is the 
dynamic viscosity, and tl, is the thermal diffusivity. 

The basic steady state solution (u,, T,,p,) of equations (1)) 
(3) satisfying the boundary condition (4) is 

where 

u, = R,z, v, = 0, w, = Q” 

T, = - R,x +f(z) 

VP, = T,k-u, 

(6) 

(7) 

(8) 

2. BASIC EQUATIONS 

We consider a porous medium occupying a layer of height 
H. The z-axis is chosen vertically upwards and x-axis is in 
the direction of applied horizontal temperature gradient PT. 

f(z) = $4z’ - 1) + J$ 
” ” 

(R’+Q’RV) [exp(Q,z)-cosh(Q,/2)]. (9) 
- 2Q: sinh(Q,/2) 

t Author to whom correspondence should be addressed. We remark that we have imposed the requirement that there 
Fax: (519) 971-3649. is no horizontal mass flow, namely, 

2549 



2550 Technical Notes 

NOMENCLATURE 

a dimensionless overall horizontal wave T dimensionless temperature 
number TS dimensionless steady state temperature 

D differential operator, d/dz u, v dimensionless perturbed velocity 
g gravitational acceleration vector/velocity vector 
H layer height n, dimensionless steady state velocity vector 
i, j, k unit vectors in the X, y and z-directions, b”” dimensionless velocity of vertical 

respectively throughflow 
K permeability x, .r, z dimensionless Cartesian coordinates. 
I dimensionless wave number in y-direction 
P. dimensionless steady state pressure Greek symbols 
P>P dimensionless pressure/perturbed % thermal diffusivity 

pressure A horizontal temperature gradient 
Q” P&let number YT coefficient of volume expansion 
RE vertical energy Rayleigh number 0 perturbed dimensionless temperature 
R” horizontal Rayleigh number K thermal diffusivity 
& vertical linear Rayleigh number p dynamic viscosity 
t dimensionless time PO density at the reference temperature. 

g < --2x2(1 -m)E. (21) 

Inequality (21) clearly indicates that for 0 < m < 1, E(r) --t 

3. STABILITY ANALYSIS 

_ .., _ , 
0 at least exponentially as 2 + co. 

We now consider the maximum oroblem eiven bv eauation 

We now perturb the basic-state solution as follows : (20) at the critical argument M f 1. The &socia;ed’Euler- 
Lagrange equations become 

v = u,+u, T= T,+O, P =ps+p, (11) 

The perturbation equations then take the form 

v*u=o (12) 

U+VP = ek (13) 

g +(u*vje = vze-u,.ve-uOvT, (14) 

where u, and T, are given by equations (6))(9). The cor- 
responding boundary conditions then become 

w=e=o at2= *t/2. (15) 

We introduce a positive coupling parameter 5 and define an 
energy functional E(t), as 

(16) 

On multiplying equation (13) by u and equation (14) by B 
and integrating over a typical periodic cell denoted by V, we 
can derive (cf. ref. [4]), 

$l__M (17) 

where 

I = -~((u.vT,)~)+(~w) (18) 

M = rl]v6]12+ ]1nli*. (19) 

Here (*) denotes the integration over V, and I/*]] denotes the 
L*(v) norm. We now define 

I 
m=max- 

*A4 

where 2 is the space of admissible solutions. On combining 
equation (17) with equations (18)-(20), and by using Poincare 
inequality, we can infer, for 0 < m < 1, that 

-5VT;u+w+25V’0 = 0 (22) 

5VTSe-ek+2u = vo (23) 

where w is a Lagrange multiplier introduced since u is solen- 
oidal. 

On taking curlcurl of equation (23) and then considering 
the third component of the resulting equation we find 

2vzw-v:(g,e)+tRH& = 0 

where Vi = (a’jax’) + (a’/@‘) and 

g1 =(I -U,), 

J; = %(Q,z+ 1) - 2~~~~$~) exp(Q,z). 
Q: 

(25) ” ” 

The other equations to be used along with equation (24) are 

SR,u+g, w+2pe = 0 (26) 

-(R,Bf2u = g. 

Following Nield [3] and Kaloni and Qiao [4], we restrict our 
attention to the steady longitudinal mode analysis as it is the 
most favorable mode of disturbance in the absence of vertical 
throughflow. Accordingly, we look for a solution, of the 
above equation, in the form 

(u, w, 8,~) = [U(Z), W(Z), e(z), W(Z)] exp(W. (28) 

On eliminating variables u and w, we derive the eigenvalue 
problem, which can be written as 

D’w = h, w+h,O (29) 

D2e = h,w+haO (30) 
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where D = d/dz, a2 == 12, and h,, . , h4 are given as : 

h, = a’, h,+, hX=-&, 

h =a,_rR:,. 
4 4 

The relevant bounda.ry conditions are 

w == 0 = 0 at z = * l/2. 

4. NUMERICAL RESULTS 

We now consider Rv as the eigenvalue with the remaining 
variables : 5, R,, a*, Qv, as parameters. The critical vertical 
Rayleigh number is defined by 

(31) RE =mpyjnRdR~,a*,t, Qv). (33) 

On letting X, = w, x2 = Dw, x3 = 8, x4 = DO, the system of 
(32) equations (29) and (30) can be written in the matrix form as 
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Fig. 1. Critical vertical linear RL and energy RE Rayleigh numbers vs. horizontal Rayleigh numbers for 

P&let number QV = 1. 
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Fig. 2. Critical vertical linear RL and energy RE Rayleigh numbers vs. horizontal Rayleigh numbers for 
P&let number QV = 5. 
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Fig. 3. Critical vertical linear RL and energy RE Rayleigh numbers vs. horizontal Rayleigh numbers for 

P&let number QV = 8. 

ir=AX (34) 

where X = (x1, x2, x3, xq)l and A is given by 

10 1 0 01 

A= (35) 

The boundary conditions now take the form 

x,=x,=0 atz= &l/2. (36) 

We next employ the compound matrix method and carry out 
the maximization and minimization routines by the golden- 
section search. Figures l-3 display our computed results of 
linear and non-linear critical vertical Rayleigh numbers for 
different values of the P&let number QV. 
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